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Whole genome, exome or gene panel 
sequencing of DNA in order to detect 
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 Understanding the effect of the  
respective genetic variants for 
different disease phenotypes. 

Understanding the genetic cause 
of bacterial resistance and correlate 
the bacterial resistance to classical  
culture based tests in order to derive 
the minimal inhibitory concentration and 
best therapy with anti bacterial agents. 
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mRNA, microRNA, methylation and  

proteins mutually interact in order 
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scale molecular representa- 
tion of human pathologies.  
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The vision: 
•  Using advanced informatics and biomarkers in order to…   

- deliver the right treatment – to the right patient – at the right time 
… for improving patients outcome 

     
cDX - strongly growing from a weak basis 

•  Currently, below 5% of drugs on the market have cDX 
•  35% of Iate development pipelines (phase IIb –IV) relying on biomarkers 
•  58% of preclinical trials relying on biomarker data 

An approach 

healthy diseased treatment I treatment II 

longitudinal data integration 
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In molecular diagnostics there is a clear shift towards exponentially increasing complexity – the 
data can not be interpreted without IT support – Bioinformatics becomes clinically relevant  



Seite 

>  Next-Generation DNA Sequencing 
three complexity stages 

9	  02.12.13 

Whole Genome 

Whole Exome 

Targeted Gene Sets 

Research 

Routine 
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Sanger HiSeq 
The 10 year Human Genome 
Project sequenced the first human 
reference genome  the cost of 
roughly $3 billion 

Today, a genome is sequenced for 
< $5,000 in less than 2 weeks on a 
single sequencing machine  
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NHGRI - analysis 

http://www.genome.gov/sequencingcosts/ 
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Technically feasible 
Clinical applications 
Limited clinical usage 

1980                1990                2000                2010                2020                2030 
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Three generations of sequencing 

First generation 
•  Classical sequencing approaches that are purely serial –  Most relevant 

examples: Maxam-Gilbert Sequencing and Sanger Sequencing 

Second generation 
•  High-throughput and parallel sequencing approaches that do not have single 

cell  / genome resolution – Illumina GA, HiSeq, ABI SOLiD, IonTorrent 

Third generation 
•  Nanopore based sequencing approaches and single cell / genome resolution 

approaches – oxford Nanopores, PacBio 
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While many tests for monogenetic disorders (Mendelian Disorders) as cystic fibrosis 
can be carried out using Sanger sequencing for complex genetic disorders as 
cardiomyopathies or especially cancer Sanger sequencing lacks throughput. In 
addition, already for a single gene NGS is less expensive and equally accurate as 
Sanger sequencing.  
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Illumina 
Ion Torrent 

Roche-454 
AB-SOLiD 

Helicos 
Pacific Bio 

OxfordNanopore 
Polonator 

CGI 
Intelligent Bio 

Genapsys 
Electronic Biosci 

Nabsys 
IBM-Roche 
NobleGen 

Genia 
LightSpeed 

GnuBio 
Bionanomatrix 

Halcyon 
ZS Genetics 

Genizon BioSci 
LaserGen 

Visigen/Starlight 
GE Global 

Stratos Genomics 
Reveo 

Base4innovation 
Li-Cor  

U.S. Genomics 
Mobious Genomics 

Nanophotonics Biosci 
Network Biosystems  

SeiraD 
Affymetrix 

Population Gen Tech 
AQI Sciences 

 

Property Minimum Maximum 

Read length 100 1,000 

# reads 200,000 6,000,000,000 

Output in GB 0.5 600 

Accuracy 95% 99.95% 

Price per GB $ 10 $ 4,000 

Price per device $ 100,000 $ 1,000,000 

GB per day 0.1 50 

37 technologies… … with very heterogeneous performance metrics …. 

… and the biggest problem becomes bioinformatics 

One human genome consists of …. 
 … up to 500 GB raw data 
 … 3 billion reads of 100 bases 

 
And has to be interpreted by clinicians    
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Cluster generation Sequencing 
Workflow 

Library Prep 

Image Size comparison 
•  50 µm — typical length of a 

human liver cell, an average-sized 
body cell 

•  78 µm — width of a pixel on the 
display of the iPhone 4 (Retina 
Display) 

•  90 µm — paper thickness on 
average 
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Alignment of reads to target genome 

Variant calling Detection of 
genomic 
aberrations  

1 – 500 GB alignment file (bam) 
1 – 500 MB variant file (vcf) 
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Detect the single disease causing variant 

Understand influence on pathways 

Understand influence on protein 
structure and therapy 

Segregation analysis 

50 kb clinical report 

Carry out targeted therapy descriptions 

Solutions 

Commercial available PROTOTYPES 



Seite 

>  Primary Analysis Example - Alignment 
>  Geenral definition for alignments 

17	  02.12.13 

Basics 
•  Given an alphabet Σ = {A,C,T,G} 
•  Given a set S of k sequences S = {s1,..,sk} on the alphabet Σ, a sequence 

alignment is a set A =  {a1,..,ak} of sequences on the alphabet Σ’ = {A,C,T,G,-} 
such that  

•  All sequences of A are of the same length 
•  After removal of {-}, ai = si for all I 
•  In all columns at least one character of Σ has to be 

 Original algorithms 
•  Global alignment – Needleman-Wunsch Dynamic Programming 
•  Local alignment – Smith-Waterman Dynamic Programming 
•  Heuristics such as BLAST 

è Not suited for NGS because of runtime constrains  
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Mapping of reads 
•  Given several billions (!) of short reads (length approx. 200 bases) find the best 

hit of the read in the human reference genome of 3 billion bases 

NGS Mapping / Alignments 
•  Given a set Q of k reads Q = {q1,..,qk} and a reference X on  an alphabet Σ = 

{A,C,T,G}. Find the best hit of qi in X for all i.  
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NGS Mapping / Alignments 
•  Given a set Q of k reads Q = {q1,..,qk} and a reference X on  an alphabet Σ = 

{A,C,T,G}. Find the best hit of qi in X for all i.  

 Approaches (1) 
Hash Table based approaches  
 
Building a hash of reads and scanning 
the genome 
 
Eland (Cox, 2007) 
RMAP (Smith, 2008) 
MAQ (Li, 2008) 
ZOOM (Lin, 2008) 
SeqMap (Jiang 2008) 
CloudBurst (Schatz, 2009)  
SHRiMP (2009) 

Flexible memory usage 
 
Good runtime for large 
sets of reads but 
overhead for small sets 
 
Usually high accuracy 
 
Frequently problems in 
gap handling  
 
Hard to be parallelized 
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NGS Alignments 

Approaches (2) 
Hash Table based approaches  
 
Building a hash of the genome 
 
SOAPv1 (Li, 2008) 
PASS (Campagna, 2009) 
MOM (Eaves, 2009) 
ProbeMatch (Jung Kim, 2009),  
NovoAlign, ReSEQ, Mosaik, BFAST 

Large memory 
requirement for indexing 
the human genome 
 
Easy to be parallelized, 
faster 
 
Speed is determined by 
error rate 

•  Given a set Q of k reads Q = {q1,..,qk} and a reference X on  an alphabet Σ = 
{A,C,T,G}. Find the best hit of qi in X for all i.  
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NGS Alignments 

Approaches (3) 
String matching using Burrows-Wheeler 
Transform 
 
SOAPv2  
Bowtie (Langmead, 2009)  
BWA (Li, 2009) 

Very fast at acceptable 
accuracy 

•  Given a set Q of k reads Q = {q1,..,qk} and a reference X on  an alphabet Σ = 
{A,C,T,G}. Find the best hit of qi in X for all i.  
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Humans are not equal 
•  On average humans differ approximately at every 1000th bp from the reference 

genome (depending on degree of relatedness, this may vary however 
substantially, extreme: identical twins) 

SNP & SNV 
•  In the case of difference from the reference 

genome the most common alteration are SNPs 
(single nucleotide polymorphisms) and SNVs 
(single nucleotide variants) 

•  Other differences are short or large insertions 
or deletions (INDELs) or larger genomic 
aberrations 

•  Bioinformatics challenge: find the true variants 
and differentiate them from sequencing errors 
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General issue 
•  We have many more DNA molecules than reads in our sequencing result.  
Reference:  Variant: 

v 

v 
v 

Original sample Sequencing result 
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General issue 
•  We have many more DNA molecules than reads in our sequencing result.  
•  All sequencers besides single molecule NGS include a PCR step  
Reference:  Variant: 

v 

v 
v 

Original sample Sequencing result 

v 

v 
v 

v 

v 
v 

v 

v 
v 

v 

v 
v 

v 

v 
v 

PCR result 
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>  Whole Genome Sequencing is scientific 
standard today 

From our first whole genome sequencing project starting in 2009 …  

►  ABI SOLiD 4 
►  3 full slides have been 

sequenced 
►  3 billion paired end reads of read 

length 50 bases  
►  96% coverage of the 3.2 billion 

bases  
►  Average coverage after removing 

duplicates was 7.6 fold 

►  Data evaluation took 12 months 
►  Sequencing costs were around 

40,000 € 

Distance from read end 

Keller et al. Nature Com. 2012 
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>  Clinically relevant findings (1) 
>  The Icemans cardiac phenotype 

CT image of abdomen and  
coronal reconstruction 

Cardiologically relevant variants 
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>  Clinically relevant findings (2) 
>  Indications for Borellia Infection 

•  Most abundant bacteria: Clostridia (72% of bacterial reads)  
•  0.16% of the total bacte- rial hits assigned to sequences of the 

pathogen B. burgdorferi 
•  Around 60% of the genome covered  
•  But: cross-organism mapping may cause false positive hits (see 

also Ames et al., 2013) 
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>  Whole Genome Sequencing is scientific 
standard today 

… to standardized High Throughput Whole Genome Sequencing 

►  ABI SOLiD 4 
►  3 full slides have been 

sequenced 
►  3 billion paired end reads of read 

length 50bases  
►  96% coverage of the 3.2 billion 

bases  
►  Average coverage after removing 

duplicates was 7.6 fold 

►  Data evaluation took 12 months 
►  Sequencing costs were around 

40,000 € 

►  Illumina HiSeq 
►  4 lanes per genome 

 
►  1.5 billion paired end reads of 

read length 200 bases  
►  >98% coverage of the 3.2 billion 

bases  
►  Average coverage after removing 

duplicates of up to 45-fold 

►  Data evaluation takes 2-4 days 
►  Sequencing costs are around 

5,000 € 
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>  Familial Exome Screenings 

Measuring 6 Exomes:  Parents Leukocyte Genomes 
     Children Leukocyte Genomes 
     Children Tumor Genomes 

 
 % covered ≥1x	   % covered ≥8x	   % covered ≥20x	   mean coverage	   Gb of coverage	  

96.02	   89.84	   79.82	   57.00	   3.54	  

95.86	   88.95	   75.98	   43.63	   2.71	  

96.10	   90.97	   82.53	   57.96	   3.60	  

95.97	   90.72	   82.23	   59.95	   3.72	  

95.57	   89.28	   78.41	   50.60	   3.14	  

95.56	   89.59	   79.10	   51.82	   3.22	  

95.85	   89.89	   79.68	   53.49	   3.32	  
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>  Familial Exome Screenings 

Measuring 6 Exomes:  Parents Leukocyte Genomes 
     Children Leukocyte Genomes 
     Children Tumor Genomes 
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>  Familial Exome Screenings  
>  Systems Biology 

1. 
 
 
 
 
2. 
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>  Familial Exome Screenings  
>  Systems Biology 
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>  Familial Exome Screenings –  
Animal Model 
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>  DCM Study 
  

37	  02.12.13 

►  Gene Panel Screening 

►  We screened approx. 700 patients (dilated cardiomyopathies) for 
almost 100 genes making up 500,000 bases.   

►  Sequencing was performed on Illumina HiSeq and Illumina MiSeq 
instruments, respectively. 

►  Challenge: Develop a fully automated solution for clinicians to handle 
and interpret NGS data 

DNA extraction Enrichment 
(SureSelect) 

Sequencing 
(Illumina HiSeq) Data Analysis 
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►  Per patient roughly 2 billion bases are sequenced such that the 
500,000 base region is covered on average maximal 4,000 fold  

►  About 99.5% of the total genomic region are covered at least with 
50 reads to ensure diagnostic quality of genetic sequence 

patients/coverage.[%] 1x 5x 8x 10x 20x 50x ADoC
patient1 99,99 99,95 99,92 99,91 99,82 99,58 3132,79
patient2 99,99 99,95 99,87 99,82 99,68 99,49 2150,17
patient3 99,99 99,99 99,99 99,98 99,90 99,61 2707,06
patient4 99,99 99,99 99,98 99,96 99,75 99,58 2279,10
patient5 99,99 99,99 99,98 99,98 99,79 99,51 2294,88
patient6 99,98 99,97 99,93 99,91 99,77 99,54 1770,30
patient7 99,94 99,79 99,71 99,66 99,49 99,10 1445,21
patient8 99,99 99,94 99,93 99,92 99,78 99,56 2086,94
patient9 99,99 99,95 99,89 99,87 99,66 99,41 1792,99
patient10 99,99 99,95 99,91 99,86 99,72 99,44 2301,86
mean 99,99 99,95 99,91 99,89 99,74 99,48 2196,13% covered ≥20x	   ADoC	  

79.82	   57.00	  
75.98	   43.63	  
82.53	   57.96	  
82.23	   59.95	  
78.41	   50.60	  
79.10	   51.82	  

79.68	   53.49	  
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►  One of the biggest challenges is still the SNP calling process. 
Analyzing wrong SNP calls we figured out 9 quality criteria that 
influence SNP calls significantly: 

►  Depth of coverage 

►  Allele balance 

►  Contiguous homopolymer run length 

►  Consistency with two segregating haplotypes 

►  5 further related to the mapping quality including phred score 



Seite 

>  Optimal parameter selection  

40	  02.12.13 

►  Each of the parameters has been optimized separately on a training 
set using Matthews Correlation Coefficient (MCC). For filter i and 
parameter j, MCC(i,j)* is calculated separately. 

►  The MCC offers a well suited measurement since it is well balanced 
and still useful if classes are of significantly different size 

►  Where TP(i,j) corresponds to the number of True Positive SNP calls for filter i and parameter j.  
►  TN(i,j), FP(i,j), FN(i,j) are defined analogously as True Negatives, False Positives and False Negatives for filter i and 

parameter j.  
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> Result per gene 
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>  Mapping to 3D Structure 
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>  The biggest clinical value is in the integration 
of different patient data over a period of time 

►  Complete characterization of 
patients with cardiac and 
neurological phenotypes 

►  Whole Genome Sequencing of 
tissue  

►  Whole miRNome sequencing of 
blood, serum and tissue  

►  Transcriptome sequencing of 
tissue  

►  Methylation 

►  Targeted proteomics and 
metabolomics  

►  MRI Imaging  
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Application Datset Size # Datasets Total Size 
miRNA  5 GB 1,000 5,000 
Gene Panels 10 GB 800 8,000 
Transcriptomes 30 GB 100 3,000 
Exomes 30 GB 500 15,000 
Genomes 500 GB 120 60,000 
Bacteria 5 GB 10,000 50,000 
Together 1.4 PetaByte 
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